4.2 Article

Empirical assessment of machine learning based software defect prediction techniques

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0218213008003947

关键词

data analysis; software defect prediction

向作者/读者索取更多资源

Automated reliability assessment is essential for systems that entail dynamic adaptation based on runtime mission-specific requirements. One approach along this direction is to monitor and assess the system using machine learning-based software defect prediction techniques. Due to the dynamic nature of software data collected, Instance-based learning algorithms are proposed for the above purposes. To evaluate the accuracy of these methods, the paper presents an empirical analysis of four different real-time software defect data sets using different predictor models. The results show that a combination of 1R and Instance-based learning along with Consistency-based subset evaluation technique provides a relatively better consistency in achieving accurate predictions as compared with other models. No direct relationship is observed between the skewness present in the data sets and the prediction accuracy of these models. Principal Component Analysis (PCA) does not show a consistent advantage in improving the accuracy of the predictions. While random reduction of attributes gave poor accuracy results, simple Feature Subset Selection methods performed better than PCA for most prediction models. Based on these results, the paper presents a high-level design of an Intelligent Software Defect Analysis tool (ISDAT) for dynamic monitoring and defect assessment of software modules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据