4.6 Article

Tea Polyphenols Protect Against Methylmercury-Induced Cell Injury in Rat Primary Cultured Astrocytes, Involvement of Oxidative Stress and Glutamate Uptake/Metabolism Disorders

期刊

MOLECULAR NEUROBIOLOGY
卷 53, 期 5, 页码 2995-3009

出版社

SPRINGER
DOI: 10.1007/s12035-015-9161-y

关键词

Methylmercury; Astrocytes; Oxidative stress; Glutamate uptake; Glutamate metabolism; Tea polyphenols

资金

  1. National Natural Science Foundation of China [81172631]

向作者/读者索取更多资源

Methylmercury (MeHg) is an extremely dangerous environmental contaminant, accumulating preferentially in CNS and causing a series of cytotoxic effects. However, the precise mechanisms are still incompletely understood. The current study explored the mechanisms that contribute to MeHg-induced cell injury focusing on the oxidative stress and Glu uptake/metabolism disorders in rat primary cultured astrocytes. Moreover, the neuroprotective effects of tea polyphenols (TP), a natural antioxidant, against MeHg cytotoxicity were also investigated. Astrocytes were exposed to 0, 2.5, 5, 10, and 20 mu M MeHgCl for 6-30 h, or pretreated with 50, 100, 200, and 400 mu M TP for 1-12 h; cell viability and LDH release were then determined. For further experiments, 50, 100, and 200 mu M of TP pretreatment for 6 h followed by 10 mu M MeHgCl for 24 h were performed for the examination of the responses of astrocytes, specifically addressing NPSH levels, ROS generation, ATPase activity, the expressions of Nrf2 pathway as well as Glu metabolism enzyme GS and Glu transporters (GLAST and GLT-1). Exposure of MeHg resulted in damages of astrocytes, which were shown by a loss of cell viability, and supported by high levels of LDH release, morphological changes, apoptosis rates, and NPSH depletion. In addition, astrocytes were sensitive to MeHg-mediated oxidative stress, a finding that is consistent with ROS overproduction; Nrf2 as well as its downstream genes HO-1 and gamma-GCSh were markedly upregulated. Moreover, MeHg significantly inhibited GS activity, as well as expressions of GS, GLAST, and GLT-1. On the contrary, pretreatment with TP presented a concentration-dependent prevention against MeHg-mediated cytotoxic effects of astrocytes. In conclusion, the findings clearly indicated that MeHg aggravated oxidative stress and Glu uptake/metabolism dysfunction in astrocytes. TP possesses some abilities to prevent MeHg cytotoxicity through its antioxidative properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据