4.6 Article

Estrogen Selectively Mobilizes Neural Stem Cells in the Third Ventricle Stem Cell Niche of Postnatal Day 21 Rats

期刊

MOLECULAR NEUROBIOLOGY
卷 52, 期 2, 页码 927-933

出版社

SPRINGER
DOI: 10.1007/s12035-015-9244-9

关键词

Doublecortin; Ethinyl estradiol; Nestin; Mitosis; Ki-67; Perinatal oral exposure; Phosphohistone; H3; Proliferation

资金

  1. National Center for Toxicological Research/Food and Drug Administration [P00706, P00710]
  2. University of Arkansas for Medical Sciences institutional in-house Hornick Awards

向作者/读者索取更多资源

The neuroprotective properties of stem cells have been described for various pathophysiological states. Here, we determined the effects of exogenous perinatal estrogen treatment on endogenous neural stem cell activity in the third ventricle stem cell niche (3VSCN) and the caudal third ventricle (C3V). Pregnant Sprague-Dawley rats were gavaged with ethinyl estradiol (EE2, 10 mu g/kg/day) or vehicle on gestational days 6-21, and their offspring were similarly treated from birth to weaning on postnatal day 21. At weaning, neural stem cell activity was investigated using the stem cell markers nestin, Ki-67, phosphohistone H3 (PHH3), and doublecortin (DCX). The 3VSCN was characterized by nestin labeling, but little DCX labeling, while both the subventricular (SVZ) and subgranular zones (SGZ) displayed robust DCX expression. Ki-67 cell counts in the 3VSCN were 2.2 to 6.4 times those of the C3V. In the 3VSCN, EE2 treatment significantly increased Ki-67, PHH3, and co-labeled cell counts by 135-207 %, effects which appeared stronger in females. EE2 treatment had only marginally significant effects in the C3V, mildly increasing PHH3 and co-labeled cell counts. Perinatal estrogen treatment selectively increased and mobilized proliferative cells in the 3VSCN at weaning, potentially providing increased neuroprotection. Because PHH3 cells are thought to be in the mitotic phase of the cell cycle and Ki-67 cells can be found in most phases of the cycle, the effect of estrogen treatment on 3VSCN cells appears to involve enhancement of mitosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据