4.7 Article

Convective heat transfer of nanofluids in a concentric annulus

期刊

INTERNATIONAL JOURNAL OF THERMAL SCIENCES
卷 71, 期 -, 页码 249-257

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ijthermalsci.2013.04.007

关键词

Nanofluids; Laminar flow; Forced convection; Heat transfer enhancement; Annuli

向作者/读者索取更多资源

Forced convective heat transfer of nanofluids in a concentric annulus is investigated theoretically to seek possible anomalous heat transfer enhancement associated with nanofluids convection, in which the heat transfer rate exceeds the rate expected from the increase in thermal conductivity of nanofluids. The Buongiorno model for convective heat transfer in nanofluids was modified to fully account for the effects of nanoparticle volume fraction distribution on the continuity, momentum and energy equations. The effects of the inner to outer diameter ratio, thermal boundary conditions on the fully developed Nusselt number have been investigated. Anomalous heat transfer enhancement has been captured for the case of the heated outer wall with the inner wall insulated. This anomaly level is found higher when the inner to outer diameter ratio is smaller. The effects of Brownian and thermophoretic diffusivities ratio, bulk mean nanoparticle volume fraction and nanoparticle type on pressure gradient and Nusselt number are discussed in depth for the case of the heated outer wall with the inner wall insulated and fixed inner to outer diameter ratio zeta = 0.5. It has been found that Nusselt number has optimal bulk mean nanoparticle volume fraction value for alumina-water nanofluids, whereas it only increases monotonously with bulk mean nanoparticle volume fraction for titania-water nanofluids. (C) 2013 Elsevier Masson SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据