4.5 Article

MicroRNA-218, microRNA-191*, microRNA-3070a and microRNA-33 are responsive to mechanical strain exerted on osteoblastic cells

期刊

MOLECULAR MEDICINE REPORTS
卷 12, 期 2, 页码 3033-3038

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/mmr.2015.3705

关键词

mechanical strain; osteoblast; microRNA; differentiation

资金

  1. National Nature Science Foundation of China [11372351, 31370942]
  2. Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics [11172062]
  3. Institute of Medical Equipment (Tianjin, China)

向作者/读者索取更多资源

MicroRNA (miRNA) is an important regulator of cell differentiation and function. Mechanical strain is important in the growth and differentiation of osteoblasts. Therefore, mechanresponsive miRNA may be important in the response of osteoblasts to mechanical strain. The purpose of the present study was to select and identify the mechanoresponsive miRNAs of osteoblasts. Mouse osteoblastic MC3T3-E1 cells were cultured in cell culture dishes and stimulated with a mechanical tensile strain of 2,50 mu epsilon at 0.5 Hz, and the activity of alkaline phosphatase (ALP), mRNA levels of ALP, osteocalcin (OCN), and collagen type I (Col I), and protein levels of bone morphogenetic proteins (BMPs) in the cell culture medium were assayed. Following miRNA microarray and reverse transcription-quantitative polymerase chain reaction analyses, differentially expressed miRNAs in the mechanically strained cells and unstrained cells were selected and identified. Using bioinformatics analysis, the target genes of the miRNAs were then predicted. The results revealed that the mechanical strain of 2,500 mu epsilon increased the activity of ALP, the mRNA levels of ALP, OCN and Col I, and the protein levels of bone morphogenetic protein(BMP)-2 and BMP-4 Continuous mechanical stimulation for 8 h had the most marked stimulant effects. miR-218, miR-191*, miR-3070a and miR-33 were identified as differentially expressed miRNAs in the mechanically strained MC3T3-E1 cells. Certain target genes of these four miRNAs were involved in osteoblastic differentiation. These findings indicated that a mechanical strain of 2,500 mu epsilon, particularly for a period of 8 h, promoted osteoblastic differentiation, and the four mechanoresponsive miRNAs identified may be a potential regulator of osteoblastic differentiation and their response to mechanical strain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据