4.4 Article

Allometric scaling of uphill cycling performance

期刊

INTERNATIONAL JOURNAL OF SPORTS MEDICINE
卷 29, 期 9, 页码 753-757

出版社

GEORG THIEME VERLAG KG
DOI: 10.1055/s-2007-989441

关键词

allometric modelling; body size; road cycling; oxygen uptake; power output

向作者/读者索取更多资源

Previous laboratory-based investigations have identified optimal body mass scaling exponents in the range 0.79-0.91 for uphill cycling. The purpose of this investigation was to evaluate whether or not these exponents are also valid in a field setting. A proportional allometric model was used to predict the optimal power-to-mass ratios associated with road-based uphill time-trial cycling performance. The optimal power function models predicting mean cycle speed during a 5.3 km, 5.4% road hill-climb time-trial were (V)over dotO(2max).m(-1.24))(0.55) and (RMPmax.m(-1.04))(0.54), explained variance being 84.6% and 70.5%, respectively. Slightly higher mass exponents were observed when the mass predictor was replaced with the combined mass of cyclist and equipment (mc). Uphill cycling speed was proportional to (V)over dotO(2max).m(-1.24))(0.55) and (RMPmax.m(c)(-1.10))(0.59). The curvilinear exponents, 0.54-0.59, identified a relatively strong curvilinear relationship between cycling speed and energy cost, suggesting that air resistance remains influential when cycling up a gradient of 5.4%. These results provide some Support for previously reported uphill cycling mass exponents derived in laboratories. However, the exponents reported here were a little higher than those reported previously, a finding possibly explained by a lack of geometric similarity in this sample.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据