4.6 Article

2D dynamic analysis of cracks and interface cracks in piezoelectric composites using the SBFEM

期刊

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
卷 51, 期 11-12, 页码 2096-2108

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2014.02.014

关键词

Dynamic stress and electric displacement; intensity factors; Cracks and interface cracks; Piezoelectric composites; Scaled boundary finite element method

向作者/读者索取更多资源

The dynamic stress and electric displacement intensity factors of impermeable cracks in homogeneous piezoelectric materials and interface cracks in piezoelectric bimaterials are evaluated by extending the scaled boundary finite element method (SBFEM). In this method, a piezoelectric plate is divided into polygons. Each polygon is treated as a scaled boundary finite element subdomain. Only the boundaries of the subdomains need to be discretized with line elements. The dynamic properties of a subdomain are represented by the high order stiffness and mass matrices obtained from a continued fraction solution, which is able to represent the high frequency response with only 3-4 terms per wavelength. The semi-analytical solutions model singular stress and electric displacement fields in the vicinity of crack tips accurately and efficiently. The dynamic stress and electric displacement intensity factors are evaluated directly from the scaled boundary finite element solutions. No asymptotic solution, local mesh refinement or other special treatments around a crack tip are required. Numerical examples are presented to verify the proposed technique with the analytical solutions and the results from the literature. The present results highlight the accuracy, simplicity and efficiency of the proposed technique. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据