4.6 Article

Nonlocal elasticity defined by Eringen's integral model: Introduction of a boundary layer method

期刊

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
卷 51, 期 9, 页码 1758-1780

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2014.01.016

关键词

Nonlocal elasticity; Eringen's integral; Exponential basis functions; Trefftz method; Fundamental solutions; Boundary layer

向作者/读者索取更多资源

In this paper we consider a nonlocal elasticity theory defined by Eringen's integral model and introduce, for the first time, a boundary layer method by presenting the exponential basis functions (EBFs) for such a class of problems. The EBFs, playing the role of the fundamental solutions, are found so that they satisfy the governing equations on an unbounded domain. Some insight to the theory is given by showing that the EBFs satisfying the Navier equations in the classical elasticity theory also satisfy the governing equations in the nonlocal theory. Some additional EBFs are particularly obtained for the nonlocal theory. In order to use the EBFs on bounded domains, the effects of the boundary conditions are taken into account by truncating the kernel/attenuation function in the constitutive equations. This leads to some residuals in the governing equations which appear near the boundaries. A weighted residual approach is employed to minimize the residuals near the boundaries. The method presented in this paper has much in common with Trefftz methods especially when the influence area of the kernel function is much smaller than the main computational domain. Several one/two dimensional problems are solved to demonstrate the way in which the EBFs can be used through the proposed boundary layer method. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据