4.6 Article

A crack tip tracking algorithm for cohesive interface element analysis of fatigue delamination propagation in composite materials

期刊

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
卷 49, 期 21, 页码 2898-2913

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2012.03.034

关键词

Cohesive; Element; Fatigue; Delamination; Fibre; Composite

资金

  1. Rolls-Royce Plc.

向作者/读者索取更多资源

A novel approach is proposed for the use of cohesive elements in the analysis of delamination propagation in composite materials under high-cycle fatigue loading. The method is applicable to delamination propagation within the Paris-law regime and is suitable for the analysis of three-dimensional structures typical of aerospace applications. The major advantages of the proposed formulation are its complete independence of the cohesive zone length - which is a geometry-dependent parameter - and its relative insensitivity to mesh refinement. This is only possible via the introduction of three nonlocal algorithms, which provide (i) automated three-dimensional tracking of delamination fronts, (ii) an estimation of direction of crack propagation and (iii) accurate and mesh-insensitive integration of strain energy release rate. All calculations are updated at every increment of an explicit time-integration finite element solution, which models the envelopes of forces and displacements with an assumption of underlying constant cyclic loading. The method was implemented as a user-defined subroutine in the commercial finite element software LS-Dyna and supports the analysis of complex three-dimensional models. Results are presented for benchmark cases such as specimens with central cut plies and centrally-loaded circular plates. Accurate predictions of delamination growth rates are observed for different mesh topologies in agreement with the Paris-laws of the material. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据