4.6 Article

Physical invariants for nonlinear orthotropic solids

期刊

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
卷 48, 期 13, 页码 1906-1914

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2011.03.002

关键词

Strain energy; Orthotropic; Nonlinear; Immediate physical invariants; Principal axes techniques; Universal relations; Experiment

向作者/读者索取更多资源

Seven invariants, with immediate physical interpretation, are proposed for the strain energy function of nonlinear orthotropic elastic solids. Three of the seven invariants are the principal stretch ratios and the other four are squares of the dot product between the two preferred directions and two principal directions of the right stretch tensor. A strain energy function, expressed in terms of these invariants, has a symmetrical property almost similar to that of an isotropic elastic solid written in terms of principal stretches. Ground state and stress-strain relations are given. Using principal axes techniques, the formulation is applied, with mathematical simplicity, to several types of deformations. In simple shear, a necessary and sufficient condition is given for Poynting relation and two novel deformation-dependent universal relations are formulated. Using series expansions and the symmetrical property, the proposed general strain energy function is refined to a particular general form. A type of strain energy function, where the ground state constants are written explicitly, is proposed. Some advantages of this type of function are indicated. An experimental advantage is demonstrated by showing a simple triaxial test can vary a single invariant while keeping the remaining invariants fixed. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据