4.4 Article

Artificial neural network simulation for prediction of suspended sediment concentration in the River Ramganga, Ganges Basin, India

期刊

出版社

IRTCES
DOI: 10.1016/j.ijsrc.2018.09.001

关键词

ANN; Water discharge; Suspended sediment concentration prediction; Ramganga River; Himalayas

资金

  1. Council of Scientific and Industrial Research (CSIR), New Delhi, India

向作者/读者索取更多资源

The relation between the water discharge (Q) and suspended sediment concentration (SSC) of the River Ramganga at Bareilly, Uttar Pradesh, in the Himalayas, has been modeled using Artificial Neural Networks (ANNs). The current study validates the practical capability and usefulness of this tool for simulating complex nonlinear, real world, river system processes in the Himalayan scenario. The modeling approach is based on the time series data collected from January to December (2008-2010) for Q and SSC. Three ANNs (T1-T3) with different network configurations have been developed and trained using the Levenberg Marquardt Back Propagation Algorithm in the Matlab routines. Networks were optimized using the enumeration technique, and, finally, the best network is used to predict the SSC values for the year 2011. The values thus obtained through the ANN model are compared with the observed values of SSC. The coefficient of determination (R-2), for the optimal network was found to be 0.99. The study not only provides insight into ANN modeling in the Himalayan river scenario, but it also focuses on the importance of understanding a river basin and the factors that affect the SSC, before attempting to model it. Despite the temporal variations in the study area, it is possible to model and successfully predict the SSC values with very simplistic ANN models. (C) 2018 International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据