4.7 Article

Influence of thermal damage on linear and nonlinear acoustic properties of granite

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijrmms.2013.05.001

关键词

Thermally damaged granite; Ultrasonic methods; Elastic wave velocities; Self-demodulation effect; Acoustic nonlinearity

资金

  1. Japan Society for the Promotion of Science (JSPS) [PE07059]
  2. [22656029]

向作者/读者索取更多资源

Thermally induced damage in Westerly granite subjected to heating/cooling cycle at different temperatures was characterized using linear and nonlinear ultrasonic methods. With the increase of material damage, pulse experiments revealed that linear wave velocity decreased down to nearly 50% of its initial value. The method of inverting wave velocities, according to a non-interactive crack effective medium theory, allowed the quantitative evaluation of the crack density, compared to the one obtained with optical observations of the microstructure of the samples. Nonlinear ultrasonic measurements were performed by emitting 1 MHz tonebursts at increasing excitation amplitude. With increasing damage, the obtained waveform appeared to transform into the second time derivative of the envelope of the emitted toneburst, revealing a self-demodulation effect. To characterize the changes with increasing damage quantitatively, a self-demodulation index is introduced. This parameter reflects the change in linear attenuation and the nonlinearity of the material in a combined manner and decreases down to 10% of its initial value, showing the high sensitivity of nonlinear ultrasonic methods compared to linear ones. A simple theoretical model, taking into account a nonlinear stress/strain relationship of the medium, provides analytical solutions of the transmitted waveforms and reproduces well the experimental results. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据