4.7 Article

Experimental study of stress wave propagation across a filled rock joint

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijrmms.2008.11.006

关键词

Wave propagation; Split Hopkinson pressure bar; Artificial rock joint; Dynamic property; Experimental study

向作者/读者索取更多资源

Dynamic properties of rock joints are of great interest to mining engineers, seismologists and geoscientists in characterizing the dynamic mechanical behavior of discontinuous rockmass. An experimental study of stress wave propagation across filled rock joints has been carried out using a modified Split Hopkinson Pressure Bar (SHPB) apparatus. Two granitic bars cored from a rock site were used as the incident and transmitter pressure bars in the SHPB tests, while a sand layer of different widths and water contents sandwiched between the two bars was adopted to simulate the filled joint. Each pressure bar was mounted with two strain gauges with a specific spacing. A wave separation method was used to process the test data. The dynamic stress-strain relation of the filled rock joints was derived from the separated strain waves. Finally, the dynamic stress-strain relations from the tests were curve-fitted by using the least square regression method and compared with a traditional joint model. It was found that the wave separation method is very effective for the SHPB tests using short granitic pressure bars. It was also concluded that the joint width and water content had significant effects on the dynamic stress-strain relation of the filled rock joints. Existing joint models were notable to sufficiently describe such dynamic properties of the filled rock joints. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据