4.6 Article

Near-surface air temperature retrieval from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data

期刊

INTERNATIONAL JOURNAL OF REMOTE SENSING
卷 35, 期 10, 页码 3892-3914

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/01431161.2014.919674

关键词

-

资金

  1. Project of Science & Technology for Beijing Excellent Doctoral Dissertation Instructor [20131002702]
  2. New Century Excellent Talents in University [NCET-12-0057]
  3. State Key Laboratory of Earth Surface Processes and Resource Ecology [2013-ZY-09]
  4. Ministry of Science and Technology of the People's Republic China [2010DFA32920]

向作者/读者索取更多资源

Spatially distributed near-surface air temperature data are a very important input parameter for several land-surface models. Such data are often lacking because there are few traditional meteorological stations. It is of great significance in both theoretical research and practical applications to retrieve air temperature data from remote-sensing observations. Based on the radiative transfer theory, this article addresses the estimate of near-surface air temperature from data from the first Chinese operational geostationary meteorological satellite, FengYun-2C (FY-2C), in two thermal infrared channels (IR1, 10.3-11.3 mu m and IR2, 11.5-12.5 mu m) and the MODIS atmospheric profile (MOD07) product, which provide profiles of water vapour and air temperature in different atmospheric layers. The algorithm involves only two essential parameters (transmittance and emissivity). Sensitivity analysis of the algorithm has been performed for evaluation of probable near-surface air temperature estimation error due to the possible errors in transmittance and emissivity. Results from the analysis indicate that the proposed algorithm is able to provide an accurate estimation of near-surface air temperature from FY-2C data. Results from the sensitivity analysis indicate that the average air temperature estimation error is less than 1.2 K for a possible transmittance error of 0.05 in both channels under an emissivity range 0.95-0.98. Assuming an error of 0.005 in ground emissivity for the two thermal channels, the average near-surface air temperature error is 0.6 K. Measured air temperature datasets have been used to validate the algorithm. All the validated data indicate that the estimate error is less than 3 K in more than 80% of the samples. The high accuracy for this dataset confirms the applicability of the proposed algorithm as an alternative method for accurate near-surface air temperature retrieval from FY-2C data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据