3.9 Article

Sirtuin1 Suppresses Osteoclastogenesis by Deacetylating FoxOs

期刊

MOLECULAR ENDOCRINOLOGY
卷 29, 期 10, 页码 1498-1509

出版社

OXFORD UNIV PRESS INC
DOI: 10.1210/me.2015-1133

关键词

-

资金

  1. National Institutes of Health [R01 AR56679, P01 AG13918]
  2. Biomedical Laboratory Research and Development Service of the Veteran's Administration Office of Research and Development [I01 BX001405]
  3. University of Arkansas for Medical Sciences Tobacco Funds and Translational Research Institute [1UL1RR029884]
  4. Intramural Research Program of the National Institute on Aging, of the National Institutes of Health

向作者/读者索取更多资源

Activation of Sirtuin1 (Sirt1), an nicotinamide adenine dinucleotide oxidized-dependent deacetylase, by natural or synthetic compounds like resveratrol, SRT2104, or SRT3025 attenuates the loss of bone mass caused by ovariectomy, aging, or unloading in mice. Conversely, Sirt1 deletion in osteoclast progenitors increases osteoclast number and bone resorption. Sirt1 deacetylates forkhead box protein (Fox) O1, FoxO3, and FoxO4, and thereby modulates their activity. FoxOs restrain osteoclastogenesis and bone resorption. Here, we tested the hypothesis that the antiresorptive effects of Sirt1 are mediated by FoxOs. We report that Sirt1 activation by SRT2104 and SRT3025 inhibited murine osteoclast progenitor proliferation and reduced osteoclastogenesis. The effect of Sirt1 stimulators on osteoclastogenesis was abrogated in cells lacking FoxO1, FoxO3, and FoxO4. FoxO1 acetylation was increased by knocking down Sirt1 or addition of receptor activator of nuclear factor kappa-B ligand, the critical cytokine for osteoclast differentiation. Furthermore, acetylation inhibited, whereas deacetylation promoted, FoxO-mediated transcription. SRT3025 increased the expression of the FoxO-target genes catalase and hemeoxygenase-1 (HO-1) in osteoclast progenitors, in a FoxO-dependent manner. HO-1 catabolizes heme and attenuates mitochondrial oxidative phosphorylation and ATP production in macrophages. HO-1 levels were strongly reduced and ATP levels increased by Receptor activator of nuclear factor kappa-B ligand. In contrast, SRT3025 and FoxOs decreased ATP production, and the effect of SRT3025 was mediated by FoxOs. These findings reveal that the antiosteoclastogenic actions of Sirt1 are mediated by FoxOs and result from impaired mitochondria activity. Along with earlier findings that the osteoblastogenic effects of Sirt1 are also mediated by FoxOs, these results establish that the dual antiosteoporotic efficacy of Sirt1 stimulators (ie, decreasing bone resorption and promoting bone formation) is mediated via FoxO deacetylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据