4.6 Article

On the classification of remote sensing high spatial resolution image data

期刊

INTERNATIONAL JOURNAL OF REMOTE SENSING
卷 31, 期 20, 页码 5533-5548

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/01431160903485786

关键词

-

向作者/读者索取更多资源

In this paper is investigated a methodology implementing an object-based approach to digital image classification using spectral and spatial attributes in a multiple-stage classifier structured as a binary tree. It is a well-established fact that object-based image classification is particularly appropriate when dealing with high spatial resolution image data. Following this approach, the image is initially segmented into objects that carry informational value. Next, spectral and spatial attributes are extracted from every object in the scene, and implemented into a classifier to produce a thematic map. As the combined number of spectral and spatial variables may become large compared to the number of available training samples, a reduction in the data dimensionality may be required whenever parametric classifiers are used, in order to mitigate the effects of the Hughes phenomenon. To this end the sequential feature selection (SFS) procedure is applied in a multiple-stage classifier structured as a binary tree. The advantage of a binary tree classifier lies in the fact that only one pair of classes is considered at each stage (node), allowing for an optimal selection of features. This proposed approach was tested using Quickbird image data covering an urban scene. The results are compared against results yielded by the traditional single-stage Gaussian maximum likelihood classifier. The results suggest the proposed methodology is adequate in the classification of high spatial resolution image data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据