4.7 Article

Soil microbiome responses to the short-term effects of Amazonian deforestation

期刊

MOLECULAR ECOLOGY
卷 24, 期 10, 页码 2433-2448

出版社

WILEY
DOI: 10.1111/mec.13172

关键词

16S rRNA gene; bacterial networks; metagenomics; slash-and-burning; soil microbial ecology; tropical rainforest

资金

  1. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES/Wageningen) [2238/10-1]
  2. Conselho Nacional de Desenvolvimento Cientifico (CNPq) [152084/2011-8, 485801/2011-6]
  3. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [2008/58114-3, 2011/517449-6]
  4. EcoLinc Dutch programme
  5. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [08/58114-3] Funding Source: FAPESP

向作者/读者索取更多资源

Slash-and-burn clearing of forest typically results in increase in soil nutrient availability. However, the impact of these nutrients on the soil microbiome is not known. Using next generation sequencing of 16S rRNA gene and shotgun metagenomic DNA, we compared the structure and the potential functions of bacterial community in forest soils to deforested soils in the Amazon region and related the differences to soil chemical factors. Deforestation decreased soil organic matter content and factors linked to soil acidity and raised soil pH, base saturation and exchangeable bases. Concomitant to expected changes in soil chemical factors, we observed an increase in the alpha diversity of the bacterial microbiota and relative abundances of putative copiotrophic bacteria such as Actinomycetales and a decrease in the relative abundances of bacterial taxa such as Chlamydiae, Planctomycetes and Verrucomicrobia in the deforested soils. We did not observe an increase in genes related to microbial nutrient metabolism in deforested soils. However, we did observe changes in community functions such as increases in DNA repair, protein processing, modification, degradation and folding functions, and these functions might reflect adaptation to changes in soil characteristics due to forest clear-cutting and burning. In addition, there were changes in the composition of the bacterial groups associated with metabolism-related functions. Co-occurrence microbial network analysis identified distinct phylogenetic patterns for forest and deforested soils and suggested relationships between Planctomycetes and aluminium content, and Actinobacteria and nitrogen sources in Amazon soils. The results support taxonomic and functional adaptations in the soil bacterial community following deforestation. We hypothesize that these microbial adaptations may serve as a buffer to drastic changes in soil fertility after slash-and-burning deforestation in the Amazon region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据