4.7 Article

Physiological Imaging-Defined, Response-Driven Subvolumes of a Tumor

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijrobp.2012.10.036

关键词

-

资金

  1. National Institutes of Health [RO1 NS064973, R21 CA113699]

向作者/读者索取更多资源

Purpose: To develop an image analysis framework to delineate the physiological imaging-defined subvolumes of a tumor in relating to treatment response and outcome. Methods and Materials: Our proposed approach delineates the subvolumes of a tumor based on its heterogeneous distributions of physiological imaging parameters. The method assigns each voxel a probabilistic membership function belonging to the physiological parameter classes defined in a sample of tumors, and then calculates the related subvolumes in each tumor. We applied our approach to regional cerebral blood volume (rCBV) and Gd-DTPA transfer constant (K-trans) images of patients who had brain metastases and were treated by whole-brain radiation therapy (WBRT). A total of 45 lesions were included in the analysis. Changes in the rCBV (or K-trans)-defined subvolumes of the tumors from pre-RT to 2 weeks after the start of WBRT (2W) were evaluated for differentiation of responsive, stable, and progressive tumors using the Mann-Whitney U test. Performance of the newly developed metrics for predicting tumor response to WBRT was evaluated by receiver operating characteristic (ROC) curve analysis. Results: The percentage decrease in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was significantly greater in the group of responsive tumors than in the group of stable and progressive tumors (P<.007). The change in the high-CBV-defined subvolumes of the tumors from pre-RT to 2W was a predictor for post-RT response significantly better than change in the gross tumor volume observed during the same time interval (P=.012), suggesting that the physiological change occurs before the volumetric change. Also, K-trans did not add significant discriminatory information for assessing response with respect to rCBV. Conclusion: The physiological imaging-defined subvolumes of the tumors delineated by our method could be candidates for boost target, for which further development and evaluation is warranted. (C) 2013 Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据