4.7 Article

Pathologic Validation of a Model Based on Diffusion-Weighted Imaging and Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Tumor Delineation in the Prostate Peripheral Zone

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijrobp.2011.07.021

关键词

Diffusion-weighted imaging; Dynamic contrast-enhanced magnetic resonance imaging; Focal boost dose; Gross tumor volume delineation

资金

  1. Dutch Cancer Society [UU-2009-4310]

向作者/读者索取更多资源

Purpose: For focal boost strategies in the prostate, the robustness of magnetic resonance imaging-based tumor delineations needs to be improved. To this end we developed a statistical model that predicts tumor presence on a voxel level (2.5 x 2.5 x 2.5 mm3) inside the peripheral zone. Furthermore, we show how this model can be used to derive a valuable input for radiotherapy treatment planning. Methods and Materials: The model was created on 87 radiotherapy patients. For the validation of the voxelwise performance of the model, an independent group of 12 prostatectomy patients was used. After model validation, the model was stratified to create three different risk levels for tumor presence: gross tumor volume (GTV), high-risk clinical target volume (CTV), and low-risk CTV. Results: The model gave an area under the receiver operating characteristic curve of 0.70 for the prediction of tumor presence in the prostatectomy group. When the registration error between magnetic resonance images and pathologic delineation was taken into account, the area under the curve further improved to 0.89. We propose that model outcome values with a high positive predictive value can be used to define the GTV. Model outcome values with a high negative predictive value can be used to define low-risk CTV regions. The intermediate outcome values can be used to define a high-risk CTV. Conclusions: We developed a logistic regression with a high diagnostic performance for voxelwise prediction of tumor presence. The model output can be used to define different risk levels for tumor presence, which in turn could serve as an input for dose planning. In this way the robustness of tumor delineations for focal boost therapy can be greatly improved. (C) 2012 Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据