4.4 Article

Unpaired electrons at the second-order reduced density matrix level: Covalent bonding, and coulomb and fermi correlations in closed shell systems

期刊

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
卷 113, 期 13, 页码 1775-1786

出版社

WILEY
DOI: 10.1002/qua.24399

关键词

unpaired electrons; electron holes; Coulomb correlation; Fermi (exchange) correlation; reduced density matrices; valence bond

向作者/读者索取更多资源

The usual one-electron populations in atomic orbitals of closed shell systems are split into unpaired and paired at the (spin-dependent) second-order reduced density matrix level. The unpaired electron in an orbital is defined as the simultaneous occurrence of an electron and an electron hole of opposite spins in the same spatial orbital, which for simplicity is called electropon. The electropon population in a given orbital reveals whether and to what degree the Coulomb correlations, and hence, the chemical bonding between this orbital and the remaining orbitals of the system are globally favorable or unfavorable. The interaction of two electropons in two target orbitals reveals the quality (favorable or unfavorable) and the strength of the covalent bonding between these orbitals; this establish a bridge between the notion of unpaired electrons and the traditional covalent structure of valence-bond (VB) theory. Favorable/unfavorable bonding between two orbitals is characterized by the positive/negative (Coulomb) correlation of two electropons of opposite spins, or alternatively, by the negative/positive (Fermi) correlation of two parallel spin electropons. A spin-free index is defined, and the relationship between the electropon viewpoint for chemical bonding and the well-known two-electron Coulomb and Fermi correlations is established. Benchmark calculations are achieved for ethylene, hexatriene, benzene, pyrrole, methylamine, and ammonia molecules on the basis of physically meaningful natural orbitals. The results, obtained in the framework of both orthogonal and nonorthogonal population analysis methods, provide the same conceptual pictures, which are in very good agreement with elementary chemical knowledge and VB theory. (c) 2013 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据