4.5 Article

Molecular cloning and characterization of salt overly sensitive gene promoter from Brassica juncea (BjSOS2)

期刊

MOLECULAR BIOLOGY REPORTS
卷 42, 期 6, 页码 1139-1148

出版社

SPRINGER
DOI: 10.1007/s11033-015-3851-4

关键词

Brassica juncea; BjSOS2 promoter; Cis-acting elements; Salinity; Multi-stress response; GUS activity

资金

  1. International Centre for Genetic Engineering and Biotechnology (ICGEB), India
  2. Department of Biotechnology (DBT), Government of India

向作者/读者索取更多资源

Salt Overly Sensitive (SOS) pathway comprising SOS1, SOS2 and SOS3 genes has been recognized as the key mechanism controlling ion homeostasis under salinity stress. SOS2 component of this pathway encodes a serine/threonine protein kinase that together with SOS3 activates downstream Na+/H+ antiporter SOS1, reestablishing cellular ion homeostasis under salinity stress. In the present study, we have found that the transcript levels of BjSOS2 are induced in response to various abiotic stresses. We have isolated a 713 bp promoter region of SOS2 gene from Brassica juncea to study the regulation of BjSOS2 under various abiotic stress conditions and further, to examine utility of the cloned upstream region in genetic engineering experiments. For this purpose, 713 bp BjSOS2 promoter:beta-glucuronidase (GUS) fusion construct, along with its two subsequent 5' deletion derivatives, D1 (443 bp) and D2 (209 bp), were stably transformed into B. juncea. Functional analysis of transgenic lines revealed significant increase in promoter activity under salinity, desiccation as well as abscisic acid (ABA) treatment which was consistent with increased transcript levels of GUS gene. BjSOS2 promoter possesses strong multi-stress inducible nature, suggesting its involvement in various aspects of stress signaling. Considering the fact that the simultaneous presence of multiple abiotic stress conditions under field conditions is a challenging threat to crop productivity, future studies may utilize the BjSOS2 promoter to drive stress-inducible expression of genes involved in imparting tolerance to multiple stresses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据