4.3 Article

Studies on Polybenzoxazine/Capron PK4/octakis(dimethylsiloxypropylglycidylether) Silsesquioxane Nanocomposites for Radiation Resistant Applications

出版社

TAYLOR & FRANCIS AS
DOI: 10.1080/00914037.2013.854239

关键词

tensile strength; morphology; OG-POSS; UV radiation; capron PK4; Benzoxazine

资金

  1. BRNS, Mumbai, Govt. of India [2012/37C/9/BRNS]

向作者/读者索取更多资源

Polymeric materials can erode when exposed to the radiation environment that includes atomic oxygen (AO), ultraviolet (UV) ionizing radiation, and ultrahigh vacuum (UHV). Many studies have been devoted to develop polymeric materials that can withstand decades of exposure on radiation. In this connection an attempt has been made to develop polyhedral oligomeric silsesquioxane (POSS) reinforced capron PK4 (CPL) modified polybenzoxazine nanocomposites in the present work and to assess their ability to resist radiation for a prolonged period. Varying weight percentages of (0, 1, 3, and 5wt%) POSS were reinforced in to 1:1 (w/w) PBZ/CPL copolymerization through chemical ring opening polymerization. The POSS reinforced PBZ/CPL nanocomposites have been studied their tensile strength and morphological behavior before and after exposure of UV irradiation. Data resulted from the studies indicated that the neat PBZ-CPL has significantly eroded after UV exposure, whereas POSS reinforced PBZ/CPL composites have eroded only an insignificant extent and the value of tensile properties are reduced to a small extent. The POSS reinforced nanocomposites during exposure under UV radiation undergo changes on the surface and lead to the formation of silica (Si-O-Si) passivation layer. The formation of silica layer protects (act as inert layer) from further erosion of the composites and was ascertained from SEM images. Data obtained from thermal and dielectric studies indicate that thermal stability and dielectric behavior of composites were appreciably improved when compared with those of neat PBZ/CPL matrix.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据