4.7 Article

Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution

期刊

INTERNATIONAL JOURNAL OF PLASTICITY
卷 56, 期 -, 页码 99-118

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2014.01.006

关键词

Phase transformation; Microstructures; Twinning; Polycrystalline material; Mechanical testing

资金

  1. NASA Fundamental Aeronautics Program, Aeronautical Sciences Project
  2. Office of Basic Energy Sciences DOE
  3. DOE [DE-AC52-06NA25396]
  4. [NNX08AB51A]

向作者/读者索取更多资源

Thermomechanical cycling of a Ni49.9Ti50.1 (at.%) shape memory alloy was investigated. Combined ex situ macroscopic experiments and in situ neutron diffraction measurements were performed to relate the macroscopic evolution in behavior (e.g., dimensional instabilities) observed during thermal cycling to the responsible microscopic mechanism(s) through texture, internal strain, peak shape, and phase evolution from the neutron data. Pre-deformation in the austenite or martensite phases affected the macroscopic cyclic behavior (e.g., actuation strain), depending on the level of pre-strain and the associated microstructural changes. However, the pre-deformation did not completely stabilize the cyclic response. Subsequent thermomechanical cycling revealed that the martensite texture changed with continued thermal cycling, while the austenite texture did not. For the conditions investigated, stagnation of the martensite texture occurred around the eighth cycle, consistent with asymptotic saturation of the macroscopic transformation strains. Moreover, diffraction spectra peak shapes (broadening) were found to vary with cycling indicative of the accumulation of lattice defects, consistent with the constant increase in residual strain. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据