4.7 Article

A plastic constitutive equation incorporating strain, strain-rate, and temperature

期刊

INTERNATIONAL JOURNAL OF PLASTICITY
卷 26, 期 12, 页码 1746-1771

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2010.02.005

关键词

Constitutive equation; Work hardening; Dual-phase (DP) steel; Thermal-mechanical FE simulation; Deformation-induced heating

资金

  1. National Science Foundation [CMMI 0727641]
  2. Department of Energy [DE-FC26-02OR22910]
  3. Auto/Steel Partnership
  4. Ohio State University
  5. National Research Council of Science & Technology (NST), Republic of Korea [PNK2280] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

An empirical plasticity constitutive form describing the flow stress as a function of strain, strain-rate, and temperature has been developed, fit to data for three dual-phase (DP) steels, and compared with independent experiments outside of the fit domain. Dubbed the H/V model (for Hollomon/Voce), the function consists of three multiplicative functions describing (a) strain hardening, (b) strain-rate sensitivity, and (c) temperature sensitivity. Neither the multiplicative structure nor the choice of functions (b) or (c) is novel. The strain hardening function, (a), has two novel features: (1) it incorporates a linear combination coefficient; alpha, that allows representation of Hollomon (power law) behavior (alpha = 1), Voce (saturation) behavior (alpha = 0) or any intermediate case (0 < alpha < 1, and (2) it allows incorporation of the temperature sensitivity of strain hardening rate in a natural way by allowing alpha to vary with temperature (in the simplest case, linearly). This form therefore allows a natural transition from unbounded strain hardening at low temperatures toward saturation behavior at higher temperatures, consistent with many observations. Hollomon, Voce, H/V models and others selected as representative from the literature were fit for DP590, DP780, and DP980 steels by least-squares using a series of tensile tests up to the uniform strain conducted over a range of temperatures. Jump-rate tests were used to probe strain rate sensitivity. The selected laws were then used with coupled thermo-mechanical finite element (FE) modeling to predict behavior for tests outside the fit range: non-isothermal tensile tests beyond the uniform strain at room temperatures, isothermal tensile tests beyond the uniform strain at several temperatures and hydraulic bulge tests at room temperature. The agreement was best for the H/V model, which captured strain hardening at high strain accurately as well as the variation of strain hardening with temperature. The agreement of FE predictions up to the tensile failure strain illustrates the critical role of deformation-induced heating in high-strength/high ductility alloys, the importance of having a constitutive model that is accurate at large strains, and the implication that damage and void growth are unlikely to be determinant factors in the tensile failure of these alloys. The new constitutive model may have application for a wide range of alloys beyond DP steels, and it may be extended to larger strain rate and temperature ranges using alternate forms of strain rate sensitivity and thermal softening appearing in the literature. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据