4.7 Article

A new model of metal plasticity and fracture with pressure and Lode dependence

期刊

INTERNATIONAL JOURNAL OF PLASTICITY
卷 24, 期 6, 页码 1071-1096

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2007.09.004

关键词

pressure effect; Lode dependence; yield surface; fracture locus; calibration method

向作者/读者索取更多资源

Classical metal plasticity theory assumes that the hydrostatic pressure has no or negligible effect on the material strain hardening, and that the flow stress is independent of the third deviatoric stress invariant (or Lode angle parameter). However, recent experiments on metals have shown that both the pressure effect and the effect of the third deviatoric stress invariant should be included in the constitutive description of the material. A general form of asymmetric metal plasticity, considering both the pressure sensitivity and the Lode dependence, is postulated. The calibration method for the new metal plasticity is discussed. Experimental results on aluminum 2024-T351 are shown to validate the new material model. From the similarity between yielding surface and fracture locus, a new 3D asymmetric fracture locus, in the space of equivalent fracture strain, stress triaxiality and the Lode angle parameter, is postulated. Two methods of calibration of the fracture locus are discussed. One is based oil classical round specimens and flat specimens in uniaxial tests, and the other one uses the newly designed butterfly specimen under biaxial testing. Test results of Bao (2003) [Bao, Y., 2003. Prediction of ductile crack formation in uncracked bodies. PhD Thesis, Massachusetts Institute of Technology] on aluminum 2024-T351, and test data points of A710 steel from butterfly specimens under biaxial testing validated the postulated asymmetric 3D fracture locus. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据