4.7 Article

Giant faults in deformed Gum Metal

期刊

INTERNATIONAL JOURNAL OF PLASTICITY
卷 24, 期 8, 页码 1333-1359

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2007.09.009

关键词

titanium alloys; deformation; dislocations; nanostructures

向作者/读者索取更多资源

We have experimentally characterized and theoretically described plastic flow localization in Gum Metal, a special titanium alloy with high strength, low Young's modulus, excellent cold workability and low resistance to shear in certain crystallographic planes. The electron transmission microscopy experiments demonstrate that plastic flow is localized in giant faults - macroscopic planar defects carrying very large plastic strains (thousand percent or more) - in deformed Gum Metal. Also, regions with highly inhomogeneous elastic strains and varying crystal lattice orientation are experimentally observed in the vicinity of giant faults. A theoretical model is suggested describing the generation of giant faults as a process resulting from generation and evolution of nanodisturbances (nanoscopic planar areas of local shear) in Gum Metal. It is shown that giant faults can effectively nucleate and evolve in Gum Metal, and their intersection with grain boundaries produces both elastic strain accumulation and inhomogeneities of crystal lattice orientation. This behavior of giant faults is expected to be essential for excellent cold ductility of high-strength Gum Metal. (C) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据