4.5 Article

UPTAKE AND TRANSLOCATION OF TI FROM NANOPARTICLES IN CROPS AND WETLAND PLANTS

期刊

INTERNATIONAL JOURNAL OF PHYTOREMEDIATION
卷 15, 期 2, 页码 142-153

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15226514.2012.683209

关键词

wetland plants; aquatic plants; crops; TiO2 nanoparticles; phytoextraction

资金

  1. National Center for Research Resources [5P20RR016471-12]
  2. National Institute of General Medical Sciences from the National Institutes of Health [8 P20 GM103442-12]
  3. NATIONAL CENTER FOR RESEARCH RESOURCES [P20RR016471] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Bioavailability of engineered metal nanoparticles affects uptake in plants, impacts on ecosystems, and phytoremediation. We studied uptake and translocation of Ti in plants when the main source of this metal was TiO2 nanoparticles. Two crops (Phaseolus vulgaris (bean) and Triticum aestivum (wheat)), a wetland species (Rumex crispus, curly dock), and the floating aquatic plant (Elodea canadensis, Canadian waterweed), were grown in nutrient solutions with TiO2 nanoparticles (0, 6, 18 mmol Ti L-1 for P. vulgaris, T. aestivum, and R. crispus; and 0 and 12 mmol Ti L-1 for E. canadensis). Also examined in E. canadensis was the influence of TiO2 nanoparticles upon the uptake of Fe, Mn, and Mg, and the influence of P on Ti uptake. For the rooted plants, exposure to TiO2 nanoparticles did not affect biomass production, but significantly increased root Ti sorption and uptake. R. crispus showed translocation of Ti into the shoots. E. canadensis also showed significant uptake of Ti, P in the nutrient solution significantly decreased Ti uptake, and the uptake patterns of Mn and Mg were altered. Ti from nano-Ti was bioavailable to plants, thus showing the potential for cycling in ecosystems and for phytoremediation, particularly where water is the main carrier.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据