4.3 Article

Mannan-Modified PLGA Nanoparticles for Targeted Gene Delivery

期刊

INTERNATIONAL JOURNAL OF PHOTOENERGY
卷 2012, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2012/926754

关键词

-

向作者/读者索取更多资源

The studies of targeted gene delivery nanocarriers have gained increasing attention during the past decades. In this study, mannan modified DNA loaded bioadhesive PLGA nanoparticles (MAN-DNA-NPs) were investigated for targeted gene delivery to the Kupffer cells (KCs). Bioadhesive PLGA nanoparticles were prepared and subsequently bound with pEGFP. Following the coupling of the mannan-based PE-grafted ligands (MAN-PE) with the DNA-NPs, the MAN-DNA-NPs were delivered intravenously to rats. The transfection efficiency was determined from the isolated KCs and flow cytometry was applied for the quantitation of gene expression after 48 h post transfection. The size of the MAN-DNA-NPs was found to be around 190nm and the Zeta potential was determined to be -15.46mV. The pEGFP binding capacity of MAN-DNA-NPs was (88.9 +/- 5.8)% and the in vitro release profiles of the MAN-DNA-NPs follow the Higuchi model. When compared with non-modified DNA-NPs and Lipofectamine 2000-DNA, MAN-DNA-NPs produced the highest gene expressions, especially in vivo. The in vivo data from flow cytometry analysis showed that MAN-DNA-NPs displayed a remarkably higher transfection efficiency (39%) than non-modified DNA-NPs (25%) and Lipofectamine 2000-DNA (23%) in KCs. The results illustrate that MAN-DNA-NPs have the ability to target liver KCs and could function as promising active targeting drug delivery vectors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据