4.7 Article

Emodin loaded solid lipid nanoparticles: Preparation, characterization and antitumor activity studies

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 430, 期 1-2, 页码 238-246

出版社

ELSEVIER
DOI: 10.1016/j.ijpharm.2012.03.027

关键词

Emodin; Solid lipid nanoparticles; High pressure homogenization; Antitumor

资金

  1. University of Macau [MYRG 208 (Y2-L4)-ICMS11-WYT, UL016/09-Y4/CMS/WYT01/ICMS]

向作者/读者索取更多资源

The objective of the present study was to prepare and characterize emodin (EMO)-loaded solid lipid nanoparticles (E-SLNs) and evaluate their antitumor activity in vitro. EMO and pharmaceutical lipid material were used to prepare E-SLNs by high pressure homogenization (HPH). Poloxamer 188 and Tween 80 were used as surfactants. The physicochemical properties of the E-SLNs were investigated by particle size analysis, zeta potential measurement, drug entrapment efficiency (EE), stability and in vitro drug release behavior. The E-SLNs showed stable particle size at 28.6 +/- 3.1 nm, ideal drug EE and relative long-term physical stability after being stored for 4 months. The drug release of E-SLNs could last 72 h and exhibited a sustained profile, which made it a promising vehicle for oral drug delivery. MTT assay showed that E-SLNs could significantly enhance the in vitro cytotoxicity against human breast cancer cell line MCF-7 and MDA-MB-231 cells compared to the EMO solution, while free EMO, blank SLNs (B-SLNs) and E-SLNs all showed no significant toxicity to human mammary epithelial line MCF-10A cells. Flow cytometric analysis demonstrated that E-SLNs also showed more significant cell cycle arrest effect in MCF-7 cells compared to bulk EMO solution. Hoechst 33342 staining and Annexin V-FITC/PI double staining further confirmed that E-SLNs induced higher apoptotic rates in MCF-7 cells, indicating that cell cycle arrest and apoptosis maybe the underlying mechanism of the enhanced cytotoxicity. Taken together, it seems that HPH was a simple, available and effective method for preparing high quality E-SLNs to enhance its aqueous solubility. Moreover, these results suggest that the delivery of EMO as lipid nanoparticles maybe a promising approach for cancer therapy. Crown Copyright (C) 2012 Published by Elsevier B. V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据