4.7 Article

Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 421, 期 1, 页码 160-169

出版社

ELSEVIER
DOI: 10.1016/j.ijpharm.2011.09.006

关键词

Hyaluronic acid; Hyaluronic acid-octadecyl; Folate-hyaluronic acid-octadecyl; Polymeric micelles; Paclitaxel

资金

  1. Key Project for Drug Innovation [2009ZX09301-012, 2010ZX09401-304]
  2. National Basic Research Program of China (973 program) [2009CB930300]

向作者/读者索取更多资源

A series of novel self-assembled hyaluronic acid derivatives (HA-C-18) grafted with hydrophobic octadecyl moiety and further dual targeting folic acid-conjugated HA-C-18 (FA-HA-C-18) were synthesized. With the increase in the degree of substitution of octadecyl group from 12.7% to 19.3%, the critical micellar concentration of HA-C-18 copolymers decreased from 37.3 to 10.0 mu g/mL. Paclitaxel (PTX) was successfully encapsulated into the hydrophobic cores of the HA-C-18 and FA-HA-C-18 micelles, with encapsulation efficiency as high as 97.3%. The physicochemical properties of the polymeric micelles were measured by DES, TEM and DSC. Moreover, in vitro release behavior of PTX was investigated by dialysis bag method and PTX was released from micelles in a near zero-order sustained manner. In vitro antitumor activity tests suggested PTX-loaded HA-C-18 and FA-HA-C-18 micelles exhibited significantly higher cytotoxic activity against MCF-7 and A549 cells compared to Taxol at a lower PTX concentration. The cellular uptake experiments were conducted by quantitative assay of PTX cellular accumulation and confocal laser scanning microscopy imaging of coumarin-6 labeled HA-C-18 and FA-HA-C-18 micelles in folate receptor overexpressing MCF-7 cells. Folate and CD44 receptor competitive inhibition studies performed by fluorescence microscopy imaging suggested intracellular delivery of HA-C-18 and FA-HA-C-18 micelles were efficiently taken up via CD44 receptor-mediated endocytosis. The folate receptor-mediated endocytosis further enhanced internalized amounts of FA-HA-C-18 micelles in MCF-7 cells, as compared with HA-C-18 micelles. The internalization pathways of PTX-loaded HA-C-18 and FA-HA-C-18 micelles might include clathrin-mediated endocytosis, caveolae-mediated endocytosis and macropinocytosis. Therefore, the present study suggested that HA-C-18 and FA-HA-C-18 copolymers as biodegradable, biocompatible and cell-specific targetable nanostructure carriers, are promising nanosystems for cellular and intracellular targeting delivery of hydrophobic anticancer drugs. Crown Copyright (C) 201 1 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据