4.7 Article

Controlling barrier penetration via exothermic iron oxidation

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 404, 期 1-2, 页码 42-48

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ijpharm.2010.10.047

关键词

Iron oxidation; Diffusion; Lidocaine; Heat; Kinetics; Hydrophilic matrix

资金

  1. MedPharm Ltd.
  2. EPSRC

向作者/读者索取更多资源

Exothermic iron oxidation is an elegant means to generate heat, with the potential to modulate barrier penetration if reaction kinetics can be controlled. This aim of this study was to gain a fundamental understanding of how these temperature change kinetics influenced barrier diffusion rate. Lidocaine transport through a hydrophilic carboxymethyl cellulose (CMC) gel was compared using two rapid iron oxidation reactions initiated by water (ExoRap(50),T-max-47.7+/-0.6 degrees C,t(max)-3.3+/-0.6 min, ExoRap(60), T-max-60.4+/-0.3 degrees C, t(max)-9.3+/-0.6 min) and a slower reaction initiated by oxygen (ExoSI(45) T-max-ca. 44 degrees C, t(max) ca. 240 min). Temperature change induced by the oxygen initiated reaction (ExoSI45) was almost double those initiated by water (over 4 h), but lidocaine diffusion was approximately 4 times higher for the latter (ExoRap50, 555.61 +/- 22.04 mu g/cm(2)/h; ExoRap(60), 663.1+/-50.95 mu g/cm(2)/h; compared to ExoSI(45), 159.36+/-29.44 mu g/cm(2)/h). The large influence of temperature change kinetics on lidocaine diffusion suggested that transport was heavily dependent on temperature induced structural changes of the barrier. CMC, like many polymers adsorbs more water when exposed to moderate increases in temperature and this appeared to be a critical determinant of lidocaine barrier diffusion rate. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据