4.7 Article

Effect of multifold charge groups and imidazole-4-carboxaldehyde on physicochemical characteristics and transfection of cationic polyphosphazenes/DNA complexes

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 390, 期 2, 页码 191-197

出版社

ELSEVIER
DOI: 10.1016/j.ijpharm.2010.01.005

关键词

Poly(2-(2-aminoethyoxy)ethoxy)phosphazene; DNA; Imidazole-4-carboxaldehyde; Gene delivery; Complexes

资金

  1. National Basic Research Program of China [2010CB934000, 2007CB935800]
  2. National Natural Science Foundation of China [30925041]
  3. National Science & Technology Major Project Key New Drug Creation and Manufacturing Program [2009ZX09501-024, 2009ZX09301-001]
  4. Shanghai Nanomedicine Program [0852nm05700]

向作者/读者索取更多资源

To understand the dual influence of multifold charge groups and conjugation of imidazole moiety on the physicochemical characteristics and the transfection activity of polymer complexes, a series of cationic polyphosphazenes based on poly(2-(2-aminoethyoxy)ethoxy) phosphazene (PAEP) with different components of multifold charge groups was synthesized by means of introducing imidazole-4-carboxaldehyde (IC) into PAEP through the formation of Schiff base. Though the polymers with primary amino groups (1 degrees) alone or with abundant primary amino groups could bind DNA more efficiently than the ones with mainly or totally secondary (2 degrees) and tertiary (3 degrees) amino groups, all of the polymers could condense DNA into small particles within 100 nm at the N/P ratio of 24. The cell viability of complexes and the pH buffering capacity of polymers increased with substitution degree of IC increasing. Among all the PAEP-based polymers, the highest transfection activity was found for poly(2(2-aminoethyoxy)ethoxy/IC)phosphazene (PAEIC) 18 complexes containing 1 degrees, 2 degrees and 3 degrees amines at a ratio of 3.5:1:1 with 18% substitution degree of IC, which indicated that either the coexistence of 1 degrees,2 degrees and 3 degrees amines or the conjugation of imidazole moiety played an important role in transfection activity. These results suggested that the most efficient gene carrier could be these polymers with 1 degrees,2 degrees and 3 degrees amines at an appropriate ratio, together with the presence of imidazole moiety in a small fraction. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据