4.7 Article

Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH) Analysis for Characterization and Quantification of Histone Post-translational Modifications

期刊

MOLECULAR & CELLULAR PROTEOMICS
卷 14, 期 9, 页码 2420-2428

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/mcp.O114.046102

关键词

-

资金

  1. NSF CAREER award
  2. NIH [R01GM110174]
  3. Div Of Molecular and Cellular Bioscience
  4. Direct For Biological Sciences [1262672] Funding Source: National Science Foundation

向作者/读者索取更多资源

Histone post-translational modifications (PTMs) have a fundamental function in chromatin biology, as they model chromatin structure and recruit enzymes involved in gene regulation, DNA repair, and chromosome condensation. High throughput characterization of histone PTMs is mostly performed by using nano-liquid chromatography coupled to mass spectrometry. However, limitations in speed and stochastic sampling of data dependent acquisition methods in MS lead to incomplete discrimination of isobaric peptides and loss of low abundant species. In this work, we analyzed histone PTMs with a data-independent acquisition method, namely SWATH (TM) analysis. This approach allows for MS/MS-based quantification of all analytes without upfront assay development and no issues of biased and incomplete sampling. We purified histone proteins from human embryonic stem cells and mouse trophoblast stem cells before and after differentiation, and prepared them for MS analysis using the propionic anhydride protocol. Results on histone H3 peptides verified that sequential window acquisition of all theoretical mass spectra could accurately quantify peptides (<9% average coefficient of variation, CV) over four orders of magnitude, and we could discriminate isobaric and co-eluting peptides (e.g. H3K18ac and H3K23ac) using MS/MS-based quantification. This method provided high sensitivity and precision, supported by the fact that we could find significant differences for remarkably low abundance PTMs such as H3K9me2S10ph (relative abundance <0.02%). We performed relative quantification for few sample peptides using different fragment ions and observed high consistency (CV <15%) between the fragments. This indicated that different fragment ions can be used independently to achieve the same peptide relative quantification. Taken together, sequential window acquisition of all theoretical mass spectra proved to be an easy-to-use MS acquisition method to perform high quality MS/MS-based quantification of histone-modified peptides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据