4.6 Article

NVP-BEZ235, a dual PI3K/mTOR inhibitor synergistically potentiates the antitumor effects of cisplatin in bladder cancer cells

期刊

INTERNATIONAL JOURNAL OF ONCOLOGY
卷 45, 期 3, 页码 1027-1035

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/ijo.2014.2505

关键词

urinary bladder; carcinoma; resistance; cisplatin; NVP-BEZ235

类别

资金

  1. Research Foundation Grant - Korean Urological Association [KUA-2009-002]
  2. SNUBH Research fund [03-2013-013]

向作者/读者索取更多资源

The PI3K/Akt/mTOR pathway is a prototypic survival pathway and constitutively activated in many malignant conditions. Moreover, activation of the PI3K/Akt/mTOR pathway confers resistance to various cancer therapies and is often associated with a poor prognosis. In this study, we explored the antitumor effect of NVP-BEZ235, a dual PI3K/mTOR inhibitor in cisplatin-resistant human bladder cancer cells and its synergistic interaction with cisplatin. A human bladder cancer cell line with cisplatin resistance was exposed to escalating doses of NVP-BEZ235 alone or in combination with cisplatin and antitumor effects was determined by the CCK-8 assay. Based on a dose-response study, synergistic interaction between NVP-BEZ235 and cisplatin was evaluated by combination index (CI), three-dimensional model and clonogenic assay. The combination of NVP-BEZ235 and cisplatin caused significant synergistic antitumor effect in cisplatin-resistant bladder cancer cells over a wide dose range and reduced the IC50 of NVP-BEZ235 and cisplatin by 5.6- and 3.6-fold, respectively. Three-dimensional synergy analysis resulted in a synergy volume of 388.25 mu M/ml(2)% indicating a strong synergistic effect of combination therapy. The combination therapy caused cell cycle arrest and caspase-dependent apoptosis. Although NVP-BEZ235 suppressed PI3K/mTOR signaling without any paradoxical induction of Akt activity, it caused MEK/ERK pathway activation. The present study demonstrated that the PI3K/mTOR dual inhibitor NVP-BEZ235 can synergistically potentiate the antitumor effects of cisplatin in cisplatin-resistant bladder cancer cells though the suppression of cell cycle progression and the survival pathway as well as induction of caspase-dependent apoptosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据