4.5 Article

Efficient meshless SPH method for the numerical modeling of thick shell structures undergoing large deformations

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijnonlinmec.2014.04.009

关键词

Large deformations; Shell structures; SPH; Explicit time integration; Strong formulation

资金

  1. China Scholarship Council

向作者/读者索取更多资源

The objective of this paper is to present an extension of the Lagrangian Smoothed Particle Hydrodynamics (SPH) method to solve three-dimensional shell-like structures undergoing large deformations. The present method is an enhancement of the classical stabilized SPH commonly used for 3D continua, by introducing a Reissner-Mindlin shell formulation, allowing the modeling of moderately thin structure using only one layer of particles in the shell mid-surface. The proposed Shell-based SPH method is efficient and very fast compared to the classical continuum SPH method. The Total Lagrangian Formulation valid for large deformations is adopted using a strong formulation of the differential equilibrium equations based on the principle of collocation. The resulting non-linear dynamic problem is solved incrementally using the explicit time integration scheme, suited to highly dynamic applications. To validate the reliability and accuracy of the proposed Shell-based SPH method in solving shell-like structure problems, several numerical applications including geometrically non-linear behavior are performed and the results are compared with analytical solutions when available and also with numerical reference solutions available in the literature or obtained using the Finite Element method by means of ABAQUS (c) commercial software. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据