4.5 Article

Differential effects of antidepressant drugs on mTOR signalling in rat hippocampal neurons

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1017/S1461145714000534

关键词

Antidepressant drugs; hippocampal dendritic outgrowth; ketamine; mammalian target of rapamycin; synaptic proteins

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology (MEST) [2011-0014049, 2010-0005057, 2012R1A1A3008447]
  2. National Research Foundation of Korea [2011-0014049, 2010-0005057, 2012R1A1A3008447] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Recent studies suggest that ketamine produces antidepressant actions via stimulation of mammalian target of rapamycin (mTOR), leading to increased levels of synaptic proteins in the prefrontal cortex. Thus, mTOR activation may be related to antidepressant action. However, the mTOR signalling underlying antidepressant drug action has not been well investigated. The aim of the present study was to determine whether alterations in mTOR signalling were observed following treatment with antidepressant drugs, using ketamine as a positive control. Using Western blotting, we measured changes in the mTOR-mediated proteins and synaptic proteins in rat hippocampal cultures. Dendritic outgrowth was determined by neurite assay. Our findings demonstrated that escitalopram, paroxetine and tranylcypromine significantly increased levels of phospho-mTOR and its down-stream regulators (phospho-4E-BP-1 and phospho-p70S6K); fluoxetine, sertraline and imipramine had no effect. All drugs tested increased up-stream regulators (phospho-Akt and phospho-ERK) levels. Increased phospho-mTOR induced by escitalopram, paroxetine or tranylcypromine was significantly blocked in the presence of specific PI3K, MEK or mTOR inhibitors, respectively. All drugs tested also increased hippocampal dendritic outgrowth and synaptic proteins levels. The mTOR inhibitor, rapamycin, significantly blocked these effects on escitalopram, paroxetine and tranylcypromine whereas fluoxetine, sertraline and imipramine effects were not affected. The effects of escitalopram, paroxetine and tranylcypromine paralleled those of ketamine. This study presents novel in vitro evidence indicating that some antidepressant drugs promote dendritic outgrowth and increase synaptic protein levels through mTOR signalling; however, other antidepressant drugs seem to act via a different pathway. mTOR signalling may be a promising target for the development of new antidepressant drugs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据