4.7 Article

Bone repair by periodontal ligament stem cell-seeded nanohydroxyapatite-chitosan scaffold

期刊

INTERNATIONAL JOURNAL OF NANOMEDICINE
卷 7, 期 -, 页码 5405-5414

出版社

DOVE MEDICAL PRESS LTD
DOI: 10.2147/IJN.S36714

关键词

periodontal ligament; stem cells; hydroxyapatite; chitosan; scaffold; tissue engineering

资金

  1. National Natural Science Foundation of China [81100756, NSFDYS 5092525]
  2. Independent Innovation Foundation of Shandong University [2012TS097]
  3. Science and Technology Program of Shandong Province [2010GSF10248]
  4. Shandong Province Natural Science Foundation [ZR2009CM118]

向作者/读者索取更多资源

Background: A nanohydroxyapatite-coated chitosan scaffold has been developed in recent years, but the effect of this composite scaffold on the viability and differentiation of periodontal ligament stem cells (PDLSCs) and bone repair is still unknown. This study explored the behavior of PDLSCs on a new nanohydroxyapatite-coated genipin-chitosan conjunction scaffold (HGCCS) in vitro as compared with an uncoated genipin-chitosan framework, and evaluated the effect of PDLSC-seeded HGCCS on bone repair in vivo. Methods: Human PDLSCs were cultured and identified, seeded on a HGCCS and on a genipin-chitosan framework, and assessed by scanning electron microscopy, confocal laser scanning microscopy, MTT, alkaline phosphatase activity, and quantitative real-time polymerase chain reaction at different time intervals. Moreover, PDLSC-seeded scaffolds were used in a rat calvarial defect model, and new bone formation was assessed by hematoxylin and eosin staining at 12 weeks postoperatively. Results: PDLSCs were clonogenic and positive for STRO-1. They had the capacity to undergo osteogenic and adipogenic differentiation in vitro. When seeded on HGCCS, PDLSCs exhibited significantly greater viability, alkaline phosphatase activity, and upregulated the bone-related markers, bone sialoprotein, osteopontin, and osteocalcin to a greater extent compared with PDLSCs seeded on the genipin-chitosan framework. The use of PDLSC-seeded HGCCS promoted calvarial bone repair. Conclusion: This study demonstrates the potential of HGCCS combined with PDLSCs as a promising tool for bone regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据