4.5 Article

A vaporization model for discrete multi-component fuel sprays

期刊

INTERNATIONAL JOURNAL OF MULTIPHASE FLOW
卷 35, 期 2, 页码 101-117

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmultiphaseflow.2008.10.006

关键词

-

资金

  1. Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL)
  2. Department of Energy, Sandia Labs

向作者/读者索取更多资源

A vaporization model for multi-component fuel sprays is described. The discrete multi-component (DMC) fuel approach was used to model the properties and composition of gasoline and diesel model fuels. Unsteady vaporization of single and multi-component fuel droplets and sprays was considered for both normal and flash-boiling evaporation conditions. An unsteady internal heat flux model and a model for the determination of the droplet surface temperature were formulated. An approximate solution to the quasi-steady energy equation was used to derive an explicit expression for the heat flux from the surrounding gas to the droplet-gas interface, with inter-diffusion of fuel vapor and the surrounding gas taken into account. The density change of the drop as a function of temperature was also considered. In order to treat phase change under trans-critical conditions, a characteristic length was defined to determine the amount of vaporized fuel as a function of time. The present vaporization models were implemented into a multi-dimensional CFD code and applied to calculate evaporation processes of single and multi-component fuel droplets and sprays for various ambient temperatures and droplet temperatures. Differences between representing model fuels using the single and multi-component fuel descriptions are discussed. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据