4.7 Review

Disruption of Axonal Transport in Motor Neuron Diseases

期刊

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
卷 13, 期 1, 页码 1225-1238

出版社

MDPI
DOI: 10.3390/ijms13011225

关键词

axonal transport; dynactin-1; dynein; kinesin; neurofilament; motor neuron; amyotrophic lateral sclerosis; spinal and bulbar muscular atrophy; spinal muscular atrophy; hereditary spastic paraplegia

资金

  1. Ministry of Education, Culture, Sports, Science, and Technology of Japan [21229011, 22390175]
  2. Ministry of Health, Labor and Welfare of Japan
  3. Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Agency (JST)
  4. [22110005]
  5. Grants-in-Aid for Scientific Research [22390175, 23390230, 21229011, 22110005] Funding Source: KAKEN

向作者/读者索取更多资源

Motor neurons typically have very long axons, and fine-tuning axonal transport is crucial for their survival. The obstruction of axonal transport is gaining attention as a cause of neuronal dysfunction in a variety of neurodegenerative motor neuron diseases. Depletions in dynein and dynactin-1, motor molecules regulating axonal trafficking, disrupt axonal transport in flies, and mutations in their genes cause motor neuron degeneration in humans and rodents. Axonal transport defects are among the early molecular events leading to neurodegeneration in mouse models of amyotrophic lateral sclerosis (ALS). Gene expression profiles indicate that dynactin-1 mRNA is downregulated in degenerating spinal motor neurons of autopsied patients with sporadic ALS. Dynactin-1 mRNA is also reduced in the affected neurons of a mouse model of spinal and bulbar muscular atrophy, a motor neuron disease caused by triplet CAG repeat expansion in the gene encoding the androgen receptor. Pathogenic androgen receptor proteins also inhibit kinesin-1 microtubule-binding activity and disrupt anterograde axonal transport by activating c-Jun N-terminal kinase. Disruption of axonal transport also underlies the pathogenesis of spinal muscular atrophy and hereditary spastic paraplegias. These observations suggest that the impairment of axonal transport is a key event in the pathological processes of motor neuron degeneration and an important target of therapy development for motor neuron diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据