4.7 Article

Chemical Structures of 4-Oxo-Flavonoids in Relation to Inhibition of Oxidized Low-Density Lipoprotein (LDL)-Induced Vascular Endothelial Dysfunction

期刊

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
卷 12, 期 9, 页码 5471-5489

出版社

MDPI
DOI: 10.3390/ijms12095471

关键词

flavonoids; endothelial dysfunction; oxidized low-density lipoprotein; structure-activity analysis; atherosclerosis; reactive oxygen species

资金

  1. National Natural Science Foundation of China [81000133]
  2. Major State Basic Research Development Program of China (973 Program) [2010CB529403]

向作者/读者索取更多资源

Vascular endothelial dysfunction induced by oxidative stress has been demonstrated to be the initiation step of atherosclerosis (AS), and flavonoids may play an important role in AS prevention and therapy. Twenty-three flavonoids categorized into flavones, flavonols, isoflavones, and flavanones, all with 4-oxo-pyronenucleus, were examined for what structural characteristics are required for the inhibitory effects on endothelial dysfunction induced by oxidized low-density lipoprotein (oxLDL). Human vascular endothelial cells EA.hy926 were pretreated with different 4-oxo-flavonoids for 2 hs, and then exposed to oxLDL for another 24 hs. Cell viability and the level of malondialdehyde (MDA), nitric oxide (NO) and soluble intercellular adhesion molecule-1 (sICAM-1) were measured, respectively. Then, correlation analysis and paired comparison were used to analyze the structure-activity relationships. Significant correlations were observed between the number of -OH moieties in total or in B-ring and the inhibitory effectson endothelial dysfunction. Furthermore, 3',4'-ortho-dihydroxyl on B-ring, 3-hydroxyl on C-ring and 2,3-double bondwere correlated closely to the inhibitory effects of flavonolson cell viability decrease and lipid peroxidation. 5,7-meta-dihydroxyl group on A-ring was crucial for the anti-inflammatory effects of flavones and isoflavones in endothelial cells. Moreover, the substituted position of B-ring on C3 rather than C2 was important for NO release. Additionally, hydroxylation at C6 position significantly attenuated the inhibitory effects of 4-oxo-flavonoids on endothelial dysfunction. Our findings indicated that the effective agents in inhibiting endothelial dysfunction include myricetin, quercetin, luteolin, apigenin, genistein and daidzein. Our work might provide some evidence for AS prevention and a strategy for the design of novel AS preventive agents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据