4.6 Article

Deposition behavior of multi-particle impact in cold spraying process

出版社

SPRINGER
DOI: 10.1007/s12613-010-0367-8

关键词

spraying; deposition; interfaces; particle interactions; bonding; simulation

资金

  1. National Natural Science Foundation of China [50871019, 50874009]
  2. National Superiority Discipline Innovation Platform Project (SKL-AMM-CS)

向作者/读者索取更多资源

In the practical cold-spraying process, a number of particles impact onto a substrate and then form a coating. To study the deformation behavior and multi-particle interactions, single-particle, two-particle, and three-particle impacts were simulated using the AN-SYS/LS-DYNA version 970. A copper coating was prepared and scanning electron microscopy (SEM) was employed to analyze the microstructures of the powders and the coating. Numerical results reveal that the critical deposition velocity is 600 m/s for a copper particle/copper substrate. The particles deform more fully due to multi-particle interactions, such as tamping, interlocking, and extrusion effects. The compression ratio increases from 40% to 70% as a result of the tamping effect. This is beneficial for achieving the cold-sprayed coating. The multi-particle morphology and compression ratio in the experiment are consistent with those of simulation results. Based on these results, the coating of high performance can be prepared through selecting appropriate parameters and suitable pre-treatment processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据