4.7 Article

Prophylactic treatment with S100A9 inhibitor paquinimod reduces pathology in experimental collagenase-induced osteoarthritis

期刊

ANNALS OF THE RHEUMATIC DISEASES
卷 74, 期 12, 页码 2254-2258

出版社

BMJ PUBLISHING GROUP
DOI: 10.1136/annrheumdis-2014-206517

关键词

-

资金

  1. Active Biotech
  2. ReumaFonds [13-3-402, 12-2-405] Funding Source: researchfish

向作者/读者索取更多资源

Objectives Alarmins S100A8/A9 regulate pathology in experimental osteoarthritis (OA). Paquinimod is an immunomodulatory compound preventing S100A9 binding to TLR-4. We investigated the effect of paquinimod on experimental OA and human OA synovium. Materials and methods Two OA mouse models differing in level of synovial activation were treated prophylactic with paquinimod. Synovial thickening, osteophyte size and cartilage damage were measured histologically, using an arbitrary score, adapted Pritzker OARSI score or imaging software, respectively. Human OA synovia were stimulated with S100A9, with or without paquinimod. Results Paquinimod treatment of collagenase-induced OA (CIOA) resulted in significantly reduced synovial thickening (57%), osteophyte size at the medial femur (66%) and cruciate ligaments (67%) and cartilage damage at the medial tibia (47%) and femur (75%; n=7, untreated n=6). In contrast, paquinimod did not reduce osteophyte size and reduced cartilage damage at one location only in destabilised medial meniscus, an OA model with considerably lower synovial activation compared with CIOA. In human OA synovium, paquinimod blocked proinflammatory (interleukin (IL)-6, IL-8, tumour necrosis factor-alpha) and catabolic (matrix metalloproteinases 1 and 3) factors induced by S100A9 (n=5). Conclusions Prophylactic treatment of paquinimod reduces synovial activation, osteophyte formation and cartilage damage in experimental OA with high synovial activation (CIOA) and ameliorates pathological effects of S100A9 in OA synovium ex vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据