4.7 Article

Thermal buckling analysis of porous circular plate with piezoelectric actuators based on first order shear deformation theory

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2014.03.024

关键词

Thermal buckling; Circular plate; Porous material; Piezoelectric actuators; First order

资金

  1. Islamic Azad University, South-Tehran Branch

向作者/读者索取更多资源

This study presents the thermal buckling of radially solid circular plate made of porous material with piezoelectric actuator layers. Porous material properties vary through the thickness of plate with a specific function. The porous plate is assumed of the form where pores are saturated with fluid. The general thermoelastic nonlinear equilibrium and linear stability equations are derived using the variational formulations to obtain the governing equations of piezoelectric porous plate. The geometrical nonlinearities are considered along with the first order shear deformation plate theory (FST). Then, closed form solution for the circular plates subjected to temperature load is obtained. Buckling temperatures are derived for solid circular plates under uniform temperature rise through the thickness for immovable clamped edge of boundary conditions. The effects of porous plate thickness, pores distribution, piezoelectric thickness, applied actuator voltage and variation of porosity on the critical temperature load are investigated. It has also been investigated the effect of different thermal expansion coefficient of porous and piezolectric plate on stability of plate. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据