4.7 Article

Mechanics of anisotropic hierarchical honeycombs

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2014.02.011

关键词

Structural hierarchy; Anisotropy; Honeycombs; Cellular structures

资金

  1. Qatar National Research Foundation (QNRF) [NPRP 09-145-2-061]

向作者/读者索取更多资源

Anisotropic hierarchical honeycombs of uniform wall-thickness are constructed by repeatedly replacing each three-edge vertex of a base hexagonal network with a similar but smaller hexagon of the same orientation, and stretching the resulting structure in horizontal or vertical directions to break the isotropy. The uniform overall thickness then adjusted to maintain the constant average density. The resulting fractal-appearing hierarchical structure is defined by the ratios of replacement edge lengths to the underlying network edge length and also the cell wall angle. The effective elastic modulus, Poisson's ratio and plastic collapse strength in the principal directions of hierarchical honeycombs were obtained analytically as well as by finite element analyses. The results show that anisotropic hierarchical honeycombs of first to fourth order can be 2.0-8.0 times stiffer and at the same time up to 2.0 times stronger than regular honeycomb at the same wall angle and the same overall average density. Plastic collapse analysis showed that anisotropic hierarchical honeycomb has the larger plastic collapse strength compared to regular hierarchical honeycomb of the same order at certain oblique wall angles. The current work provides insight into how incorporating anisotropy into the structural organization can play a significant role in improving the mechanics of the materials structure such as regular or hierarchical honeycombs, and introduces new opportunities for development of novel materials and structures with desirable and actively tailorable properties. (C) 2014 Elsevier Ltd. All rights

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据