4.4 Article

Numerical simulation of the tumor interstitial fluid transport: Consideration of drug delivery mechanism

期刊

MICROVASCULAR RESEARCH
卷 101, 期 -, 页码 62-71

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mvr.2015.06.007

关键词

Computational modeling; Tumor; Surrounding normal tissue; Interstitial fluid transport; Drug delivery

向作者/读者索取更多资源

The interstitial fluid transport plays an important role in terms of its effect on the delivery of therapeutic agents to the cancerous organs. In this study, a comprehensive numerical simulation of the interstitial fluid transport establishing 3D models of tumor and normal tissue is accomplished. Different shapes of solid tumors and their surrounding normal tissues are selected, by employing the porous media model and incorporating Darcy's model and Starling's law. Besides, effects of the tumor radius, normal tissue size, tissue hydraulic conductivity and necrotic core are investigated on the interstitial fluid pressure (IFP) and interstitial fluid velocity (IFV). Generally, results suggest that the configurations of the tumor and surrounding normal tissue affect IFP and IFV distributions inside the interstitium, which are much more pronounced for various configuration of the tumor. Furthermore, findings demonstrate that larger tumors are more prone for producing elevated IFP comparing with the smaller ones and impress both IFP and IFV dramatically. Nevertheless, normal tissue size has less impact on IFP and IFV, until its volume ratio to the tumor remains greater than unity; conversely, for the values lower than unity the variations become more significant. Finally, existence of necrotic core and its location in the tumor interstitium alters IFP and IFV patterns and increases IFV, considerably. (c) 2015 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据