4.0 Article

Computational implementation of Cosserat continuum

出版社

INDERSCIENCE ENTERPRISES LTD
DOI: 10.1504/IJMPT.2009.022401

关键词

strain gradient plasticity; size effect; length scale; constitutive modelling; integration algorithms

向作者/读者索取更多资源

The recent trend towards miniaturisation has pushed the development of non-classical continuum mechanics theories intended to explain the behaviour of materials at small scales. In particular, a wide range of observed size dependent phenomena has been experimentally identified. Two issues arise in the numerical treatment of the theories. Firstly, in a displacement-based finite element approach the need appears for higher orders of continuity in the interpolation functions. Secondly, if non-linear-inelastic material response is expected the theories should be cast in rate form and the corresponding integration algorithms complete the implementation. In this paper we address both problems for the particular case of a Cosserat Couple Stress theory. We describe alternatives for the numerical treatment and then we extend the framework to the case of a rate independent inelastic - non-linear material behaviour. The equations are presented in its flow theory form together with integration algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据