4.7 Article

Investigations of yield stress, fracture toughness, and energy distribution in high speed orthogonal cutting

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2013.05.007

关键词

Yield stress; Fracture toughness; Plastic deformation; High speed machining; AISI 1045 steel

资金

  1. National Basic Research Program of China [2009CB724401]
  2. Foundation of Shandong Province of China for Distinguished Young Scholars [JQ200918]
  3. Major Science and Technology Program of High-end CNC Machine Tools and Basic Manufacturing Equipment [2012ZX04003-041]

向作者/读者索取更多资源

This paper presents a novel prediction method of the yield stress and fracture toughness for ductile metal materials through the metal cutting process based on Williams' Model [38]. The fracture toughness of the separation between the segments in serrated chips in high speed machining is then deduced. In addition, an energy conservation equation for high speed machining process, which considers the energy of new created workpiece surfaces, is established. The fracture energy of serrated chips is taken into the developed energy conservation equation. Five groups of experiments are carried out under the cutting speeds of 100, 200, 400, 800 and 1500 m/min. The cutting forces are measured using three-dimensional dynamometer and the relevant geometrical parameters of chips are measured with the aid of optical microscope. The experiment results show that the yield stress of machined ductile metal material presents an obviously increasing trend with the cutting speed increasing from 100 to 800 m/min while it decreases when the cutting speed increases to 1500 m/min further. Meanwhile, the fracture toughness between the chip and bulk material displays a slightly increasing tendency. In high speed machining, the fracture toughness of the separation between the segments in serrated chips also presents increasing trend with the increasing cutting speed, whose value is much greater than that between the chip and bulk material. In the end, the distribution of energy spent in cutting process is analyzed which mainly includes such four portions as plastic deformation, friction on the tool-chip interface, new generated surface and chip fracture. The results show that the proportion of plastic deformation is the largest one while it decreases with the cutting speed increasing. However, the proportions of energy spent on new created surface and chip fracture increase due to the increasing of both the chip's fracture area and the fracture toughness. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据