4.7 Article

Understanding the tool wear mechanism during thermally assisted machining Ti-6Al-4V

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2012.07.001

关键词

Titanium; Machining; Tool life; Wear mechanism

资金

  1. Defence Materials Technology Centre (DMTC)
  2. Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM)
  3. Australian Government's Defence Future Capability Technology Centres Programme

向作者/读者索取更多资源

Thermally assisted machining is an emerging manufacturing process for improving the productivity when machining many difficult-to-cut engineering materials. Traditionally the process is reserved for very hard and high strength materials where abrasive and notching wear mechanisms cripple tool longevity. Recently there has been interest in using the process to machine titanium alloys and published reports indicate that machinability is improved, namely though a reduction in cutting forces. However, there is still ambiguity about whether the process is beneficial for tool life and the specific wear mechanisms for carbide tooling remain unknown. This work characterises the tool life and wear mechanism for two uncoated carbide tools when turning Ti-6Al-4V at high speed. While it is observed that thermally assisted machining reduces the cutting forces, it is found that the process has a deleterious effect on tool life because the dominant wear mechanism associated with diffusion is exacerbated during thermally enhanced machining. The process is compared against coolant technologies from the literature using identical tooling and cutting parameters and it is found that cooling the tool suppresses adhesion-diffusion wear and significantly prolongs tool life. (c) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据