4.4 Article

Carbon footprint of canola and mustard is a function of the rate of N fertilizer

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11367-011-0337-z

关键词

Brassica juncea; Brassica napus; Carbon footprint; Environment; Greenhouse gas; Nitrogen management; NUE; Yellow mustard

资金

  1. Saskatchewan Canola Development Commission
  2. Matching Investment Initiative of Agriculture and Agri-Food Canada
  3. Gansu Agricultural University in Lanzhou, China

向作者/读者索取更多资源

Best agricultural practices can be adopted to increase crop productivity and lower carbon footprint of grain products. The aims of this study were to provide a quantitative estimate of the carbon footprint of selected oilseed crops grown on the semiarid northern Great Plains and to determine the effects of N fertilization and environments on the carbon footprint. Five oilseed crops, Brassica napus canola, Brassica rapa canola, Brassica juncea canola, B. juncea mustard, and Sinapis alba mustard, were grown under the N rates of 0, 25, 50, 100, 150, 200, and 250 kg N ha(-1) at eight environsites (location x year combinations) in Saskatchewan, Canada. Straw and root decomposition and various production inputs were used to calculate greenhouse gas emissions and carbon footprints. Emissions from the production, transportation, storage, and delivery of N fertilizer to farm gates accounted for 42% of the total greenhouse gas emissions, and the direct and indirect emission from the application of N fertilizer in oilseed production added another 31% to the total emission. Emissions from N fertilization were nine times the emission from the use of pesticides and 11 times that of farming operations. Straw and root decomposition emitted 120 kg CO(2)eq ha(-1), contributing 10% to the total emission. Carbon footprint increased slightly as N rates increased from 0 to 50 kg N ha(-1), but as N rates increased from 50 to 250 kg N ha(-1), carbon footprint increased substantially for all five oilseed crops evaluated. Oilseeds grown at the humid Melfort site emitted 1,355 kg CO(2)eq ha(-1), 30% greater than emissions at the drier sites of Scott and Swift Current. Oilseeds grown at Melfort had their carbon footprint of 0.52 kg CO(2)eq kg(-1) of oilseed, 45% greater than that at Scott (0.45 kg CO(2)eq kg(-1) of oilseed), and 25% greater than that at Swift Current (0.45 kg CO(2)eq kg(-1) of oilseed). Carbon footprint of oilseeds was a function of the rate of N fertilizer, and the intensity of the functionality varied between environments. Key to lower carbon footprint in oilseeds is to improve N management practices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据