4.4 Article

Molecular pathology of pulmonary surfactants and cytokines in drowning compared with other asphyxiation and fatal hypothermia

期刊

INTERNATIONAL JOURNAL OF LEGAL MEDICINE
卷 126, 期 4, 页码 581-587

出版社

SPRINGER
DOI: 10.1007/s00414-012-0698-2

关键词

Molecular pathology; Drowning; Hypothermia; Immunohistochemistry; Real-time RT-PCR; Cytokines; Pulmonary surfactant-associated protein

资金

  1. Grants-in-Aid for Scientific Research [22590642] Funding Source: KAKEN

向作者/读者索取更多资源

Drowning involves complex fatal factors, including asphyxiation and electrolyte/osmotic disturbances, as well as hypothermia in cold water. The present study investigated the molecular pathology of pulmonary injury due to drowning, using lung specimens from forensic autopsy cases of drowning (n = 21), acute mechanical asphyxia due to neck compression and smothering (n = 24), and hypothermia (cold exposure, n = 11), as well as those of injury (n = 23), intoxication (n = 13), fire fatality (n = 18), and acute cardiac death (n = 9) for comparison. TaqMan real-time reverse transcription polymerase chain reaction was used to quantify messenger RNA (mRNA) expressions of pulmonary surfactant-associated proteins A and D (SP-A and SP-D), tumor necrosis factor (TNF)-alpha, interleukin (IL)-1 beta, and IL-10. SP-A and SP-D mRNA levels were lower for drowning, mechanical asphyxiation, fire fatality, and acute cardiac deaths than for hypothermia and injury. TNF-alpha, IL-1 beta, and IL-10 mRNA levels were higher for drowning or for drowning and injury than for other groups; there was no significant difference between fire fatality, involving airway injury due to inhalation of hot/irritant gases, and other control groups. These observations suggest characteristic molecular biological patterns of pulmonary injury involving suppression of pulmonary surfactants and activation of early-phase mediators of inflammation in drowning, with high mRNA expression levels of pulmonary surfactants in fatal hypothermia; however, there was no significant difference among these markers in immunohistochemical detection, except for SP-A. These mRNA expressions can be used as markers of pulmonary injury to assist in investigations of the pathophysiology of drowning and fatal hypothermia in combination with other biochemical and biological markers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据